

LBNL

Superconducting Magnet Program

DOE/HEP Review

May 29, 2003

Stephen A. Gourlay

Superconducting Magnet Program

- Program Overview
 - Mission and Philosophy
 - History
 - Conductor and Materials
 - Magnets

- Technical Progress, Current Status
- Budget and Staff Update
- Summary

Mission and Philosophy

- Accelerator Magnet Program emphasizing development of new technology for HEP
 - <u>Issue-driven</u> accelerator magnet program
 - Explore parameter space and challenge existing limits
 - High fields/gradients
 - Accelerator quality
 - Aperture
 - Training
 - Cost effective designs

"conservatism is not our style"

HEPAP Recommendations

- 2001
 - "... high priority to accelerator R&D because it is absolutely critical to the future of our field".
 - LBNL has been developing enabling technology for HEP for over 20 years
 - "High-field magnet research is particularly important"
 - LBNL has produced record breaking fields in two different geometries
 - No program has built more magnets with fields exceeding 10 Tesla
 - LBNL leadership of the LARP Magnet Program (S. Gourlay)
 - LBNL leadership of the DOE/HEP Conductor Development Program (R. Scanlan)
 - "efforts should be made to form an international collaboration as early as possible".
 - LBNL-sponsored international workshop on "Magnets beyond NbTi" (3/17-18/03)
 - Participation in ESGARD (European Steering Group on Accelerator R&D)

History of Program Contributions

NbTi Technology

- SSC
 - First 40 mm dipole prototypes
 - Quad prototypes (1m and 5m)
 - Materials and cable development
 - D19
 - World Record Dipole field of <u>10.15 T</u>
 - 50 mm aperture SSC prototype
- LHC
 - Cable for IR quads
 - IR quad design
 - DFBX components

Nb₃Sn Technology

- Cosθ geometry
 - D19h − Nb₃Sn/NbTi hybrid
 - D20
 - World record dipole field of <u>13.5 T</u>
 - 50 mm aperture
- Racetrack geometry
 - Common coil
 - $\overline{6}$ T, $\overline{12.2}$ T, $\overline{10}$ T
 - World record dipole field of <u>14.5 T</u>
 - "H" geometry
 - > 15 T (This summer)

Superconducting Magnet Program

Full spectrum development program for superconducting magnet technology

Materials and Conductor

Magnets

- More than two decades at the forefront of magnet technology
 - Our program maintains continuity
 - Driven by HEP, not lab priorities
 - Opportunity for innovation not just an iteration of what was done before
- Strong interactions with industry, labs and universities
 - Exceptional record in materials development with industry
 - DOE/HEP Conductor Development Program
 - SBIR's
 - Organizer and sponsor of Low Temperature Superconductor Workshop

SC Materials and Cable Development

State of the art cabling facility to support HEP technology programs

- Lead Lab for DOE Conductor Development Program
 - Significant progress on Nb₃Sn J_C
 - 50% increase in 3 years
 - $\sim 3,000 \text{ A/mm}^2 \text{ at } 12 \text{ T and } 4.2 \text{ K}$
- LHC High Gradient Quad Cable
 - NbTi cable for FNAL completed 2-02
 - Fully keystoned Nb₃Sn for LHC upgrade

- Cable R&D
 - Explore the limits of Rutherford-type cables
 - New techniques
 - New Materials (HTS)

Conductor Development Program Priorities

OST

FY03

- Reduce D_{eff} from 120 to 50 microns
- Improve diffusion barriers to increase Cu RRR
- Scale up HER (Hot Extruded Rod) billet size

OKAS

Reduce D_{eff} from 120 to 50 microns with internal fins

Low D_{eff} in high J_c Nb₃Sn

Fundamental issue is restacking large numbers of subelements

Collaborations and Community Service

SC Materials and Cable

- Fermilab Nb₃Sn program (W&R, R&W)
- Texas A&M Nb₃Sn Program
- BNL Nb₃Sn/HTS
- U. Twente Powder-in-Tube Nb₃Sn
- Insulation development w/ CTD and MCT (SBIR Programs)

Community Contributions

- ASC
- Snowmass
- CEC/ICMC
- MT-18
- MuTAC
- DOE/SBIR Reviews
- PAC
- HEP/LTSW Organizers
- WAAM Organizers

(Workshop on Advanced Accelerator Magnets)

Technical Review Committees

Every year our program contributes more than \$300k in services to other programs

LDRD

Exploring the limits of technology for new applications

Ex-Situ MRI –

G.L. Sabbi, P. Ferracin, S. Bartlett

NMR and MRI outside the magnet

Superconducting Undulator –

D. Dietderich and S. Prestemon (ED)

High fields and short periods are required for advancing the field

Work-For-Others and Tech Transfer

- LHC
 - Emergency correction coil cable run
 - Completed in April
 - LHC Feedboxes (DFBX)
 - Lambda plug fabrication

- Showa Electric
 - Bi-2212 Cable
- Quad test for Fusion Program

 Sub-scale magnet technology for Fermilab

Common Coil Magnets at LBNL

- High Field
- Field Quality
- Simple Fabrication Techniques

10.9 Tesla

12 Tesla RT1

6 Tesla RD2

12 Tesla SM-01

Magnet Development

Fully Integrated Program

- Field quality design options
 - RD Series
- New geometries for high field
 - HD-Series
- Technology Development
 - Sub-scale model program (SM)

RD Series: Common Coil Layout

A new design paradigm aiming at conductor compatibility and cost reduction

<u>Advantages:</u>

- Large end radius
- Flat cable
- High packing in small aperture
- Simpler support structure

Challenge:

Incorporate accelerator quality while maintaining simplicity

RD3c Objectives

For the first time in a common coil dipole:

- 1. Demonstrate central geometric harmonics at 10⁻⁴ level in a 35 mm bore
- 2. Perform measurements of other relevant geometric and dynamic effects
- 3. Compare experimental data with calculated values

Simple coil configuration:

- RD3B Outer Modules
- New, RD3B-type inner module

Geometric field quality features:

- Auxiliary (pole) turns
- Central spacer

Design field: 10.9 T

RD3c Magnetic Design

Coil geometry

Field at the probe

RD3c Test Results: Field Quality

Central harmonics

Normal	calculated	measured
b ₃ (unit)	-5.44	-10.39
b ₅ (unit)	-0.24	-0.02
b ₇ (unit)	0.58	0.61
b ₉ (unit)	< 0.01	< 0.01

 $I_{op}=10 \text{ kA}, R_{ref}=10 \text{ mm}$

Magnetization – Eddy Currents

End Field

Iron Saturation

RD Series: Next Steps

RD3D

- Single layer aux. coils
- End optimization
- 10⁻⁴ geom. harmonics
- 11 T, 40 mm clear bore

X-80.0 X

RD4

- Two-layer inner module
- Flared ends for aperture
- 10⁻⁴ geom. harmonics
- 13 T, 40 mm clear bore

RD5

- Four layers, flared ends
- 10⁻⁴ geometric, end harm.
- Saturation, magnetization
- 15 T, 40 mm clear bore

HD Series: 15–18 Tesla

New High Field Dipole Test Configuration

Design Features:

- Single bore
- Two flat double pancakes
- Horizontal configuration
- Dipole field 15-18 T

Magnet cross-section

Coil cross-section

Coil end field

Next Step: HD1 Dipole

Goal (and challenge):

In one step, new coil configuration and new field record: 15+ T

SHORT SAMPLE PARAMETERS

Parameter	Unit	HD1	RD3B
$B_0^{(ss)}$	T	16.2	14.5
$I^{(ss)}$	kA	10.5	10.8
B_{max}	T	15.6	14.8
$J_{cu}^{(ss)}$	kA/mm ²	1.2-1.4	1.1/1.5

Status:

Coils in reaction oven

Test in August

Full 3D Analysis

- Magnetic
- Thermal
- Structural
- Electrical

HD Series: High Field

Design features	Dipole field (T)	Iss (kA)
HD1 reference	16.2	10.5
RD3B conductor	15.3	10.0
Nb ₃ Sn graded coil (8 turns half density)	17.5	14.0
HTS insert 7 turns 0.8 mm 361 A @ 18 T	18.6	13.0

HD Series: Accelerator Quality

Design issues (and priority):

- 1. Saddle ends for efficiency
- 2. Clear bore size and support
- 3. Spacers & field quality

Dual bore configuration: Super LHC?

SM Series: Subscale Prototypes

Technology Development with Fast Turnaround

- Scaled version of main magnet
 - Approx. 1/3 scale
- Field range of 9 12 Tesla
- Two-layer racetrack coils
 - 5 kg of material per coil
- Streamlined test facility
 - Small dewar
 - Basic instrumentation

First mechanical test demonstrated bladder & key assembly for RD3

SM Magnet Features

Modular, reusable components

Two layer coil

Assembled Magnet

SM Prototypes 2002-2003

- SM-02 (July 2002)
 - Mixed-strand
 - Low quench performance
- SM-03 (October 2002)
 - Mixed-strand
 - Better performance than SM-02
- SM-04 (October 2002)
 - CTD/FNAL Ceramic Insulation
 - Excellent performance
- SM-05 (March 2003)
 - Stress/temperature limits
 - Excellent performance

SM05 Test: peak temperature 600 K

R&D Program Tree (RD, HD, SM)

LHC Luminosity Upgrade

Second-generation Nb₃Sn IR Quadrupoles

Assuming $J_c(12T, 4.2K) = 3 \text{ kA/mm}^2 \text{ T}_{op} = 1.9K$

Maximum gradient Conductor peak field

- 260 T/m (2-layer)
- 13.3 T (2-layer)
- 285 T/m (4 layer)
- 14.4 T (4 layer)
- Will extend the discovery potential of LHC
- Key contribution of the LBNL Program:

Successful LBNL prototype tests demonstrated the feasibility of the LHC luminosity upgrade

- Leadership role

Two or four layer designs

Bladder and key assembly

Budget and Staff Update

- Expecting a \$500k increase for FY04
 - Test Facility improvements
- Test facility staff augmented
 - Mark Nyman (EE)
 - Bill Lau (E-tech)

Still some problems due to flat-flat budget history

- Priorities
 - Maintain staff
 - Maintain productivity
- Shift effort to Sub-Scale Magnet program
 - Focus on large models as resources allow
- Bring in outside work
 - Bi-2212 Cable for Showa
 - GSI
 - Fusion HCX quad tests

Funding Projection

SMP with Flat Funds after FY04

(Labor & M&S adjusted to stay at the fund level)

LBNL Superconducting Magnet Program

- Extensive expertise in application of Nb₃Sn to high field magnets
 - Apply proven LBNL technology
 - First HEP application of Nb₃Sn will be for LHC upgrades
 - Applications in other fields
 - Future HEP Projects
 - Develop and maintain the largest set of HEP options
- DOE has set ambitious goals for the program
 - Supported by significant funding increase in FY04

Summary

- Program is making steady progress
 - HD1 New dipole field record on the horizon
 - We are now well into the new Sub-scale magnet test program
 - Completed 4 tests since last review
 - Four more next year
 - DOE/HEP Conductor Development Program continues to show excellent progress
- Some Issues
 - Staff
 - We have assembled an excellent team need to maintain it!
 - Funding
 - Looking up but still need to augment with other work

Superconducting Magnet Program

BERKELEY LAB

Development

S. Gourlay (Leader)

Cable Development

R. Scanlan (Leader)

A. Lietzke (Coordinator)

Technical Staff

- Technicians
 - P. Bish
 - M. Goli
 - R. Hannaford Magnet Fabrication
 - H. Higley
 - B. Lau
 - N. Liggins
 - J. Swanson
- Engineering/Design Staff
 - S. Bartlett (ME)
 - S. Caspi (ME) Magnet Design
 - P. Ferracin (ME Post-Doc)
 - R. Hafalia (ME)
 - R. Hinkins (Retiree)
 - M. Nyman (EE)

- Scientific Staff
 - L. Chiesa
 - D. Dietderich
 - S. Gourlay
 - A. Lietzke Test Facility
 - A. McInturff (1/2)
 - **G.** Sabbi (1/2)
 - R. Scanlan
- Administrative Support
 - M. Barry (1/8)
 - S. Buckley (1/8)
 - J. Smithwick (1/4)
 - K. Weber
- Students
 - B. Byer (UCB)
 - K. Molnar (UCB)